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The problem of the identification of the non-stationary temperature regime of a heat-transmitting wall surface 

from the results of measurements at an inner point of the body or at a heat-insulated surface is considered. 

The basis for this method is the joint application of Lavrenf ev regularization and the method of imaginary 

frequency responses. The given approach enables one to obtain an expression in a form convenient for 

calculations. 

In actual practice, problems of identification of the evolution law of an air stream or the temperature of a 
heat-transferring surface that is inaccessible for direct measurements for a number of reasons frequently arise. 

Among such problems are, in particular, problems of monitoring thermoelastic strains in construction elements and 

thermal technological parameters. Such problems are known to be ill-posed since they require reconstruction of a 
signal (cause) from the results of measurements of the response (consequences). Physical ill-posedness of the 

problem results in its mathematical ill-posedness. 
The existing methods for solving ill-posed inverse problems [1-3  ] possessing a number of definite 

advantages can be applied, however, mainly to research problems and imply application of powerful computers. 
We will show that restricting the consideration to bodies of simple geometry allows one to simplify 

substantially the algorithm for solving inverse boundary thermoconductivity problems (ITP) that consist in 
identification of the boundary condition at one of the surfaces. In this case thermophysical characteristics of the 

material are considered to be known, whereas the initial temperature is considered to be constant. To construct 
the algorithm we will proceed from the relationship between the known T (Fo) and sought g(Fo) functions given as 

the convolution equation 

Fo 

~o (Fo) = f 17 (Fo - 0 g (0  dr .  (I) 
0 

The relationship (1) is obtained when solving the corresponding direct thermoconductivity problem, for which 
function g(Fo), which determines the boundary conditions, is considered to be known. The kernel of the equation 

(1) is the inverse transform of the transmission function that relates the Laplace transforms of the functions ~o(Fo) 

and g(Fo) and is known fromthe solution of the direct problem [4 ]. 
In solving the inverse problem, equation (1) is a Volterra integral equation of the first kind with respect to 

the sought function g(Fo). To solve this equation we will apply the Lavrent'yev regularization method [5, 6 ], which 

consists in replacing equation (1) with a Volterra equation of the second kind that is close to it: 

Fo 
7~ (Fo) = f 17 (t - r) g (Q dr + ag (Fo), (2) 

0 

where a is the regularization parameter. 
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Taking the Laplace transform of equation (2), we find the image of the sought function 

g (P) = T (p) / ( I I  (p) + a) .  (3) 

The immediate conversion to the inverse transforms in equation (3) is a painstaking job due to the absence of a 

tabulated inverse transform. To find an approximate inverse transform we make use of the fact that the Lavrent'yev 

regularization method can be applied also in the case of an inexactly given kernel of the integral equation (1). To 

form the approximate kernel we use the method of imaginary frequency responses [7 ], which consists in substitution 

of a fractional rational function for the Laplace transform. Let the approximation II(p) of the transmission function 

be 

(p) _ b (4) 
2, 

b + a p + p  

where a and b are certain coefficients. Substituting the approximation (4) into the equation (3) and going back to 

the inverse transforms we obtain the working formula 

1 [ b F f ~  (5) g (Fo) = 7 r (Fo) - o 

). where - /3  = a/2; c9 = ~ b -/32 

To carry out calculations according to expression (5) one should find the optimum value of the 

regularization parameter a, which depends on the error in the experimental data and the accuracy of the repre- 

sentation of the kernel. Since in practice the experimental errors are frequently unknown, the following criterion 

was used to determine the regularization parameter [8 ]: 

II Yai+ 1 - Ya i II = min, (6) 

where ai+ 1 = Oai, 0 < 0 < 1. 
The choice of such a criterion has a theoretical basis only for several classes of inverse problems; however 

its practical application appeared to be most suitable in the method under consideration since such a choice of the 

parameter allows one to find its value from results of processing of data from a single experiment. In the subsequent 

calculations a may be considered to be equal to the value found. 

Consider an analytical solution of the problem in the case where the experimentally determined 

temperature at the surface of a thermo-insulated plate is the linear function of time u(0, Fo) = AFo. In this case 

the transmission function is expressed as lI(p) = 1/chv~, whereas its approximation (4) takes the form 

(p) = 24 
2 ~ 

24 + 12p + p 

Calculating the integral I in equation (5) and taking into account the numerical value/3 -- 6, we obtain for large 

Fourier numbers 

_ 2 4 8 ]  
2" I =  AFo fl2+co 2 fl 2+oo 

Substituting the value found into equation (5) and taking into account the dependence oo = oo(a), we 
eventually find 

u (1, Fo) - A Fo + 0.SA (7) 
1 + a (1 + a) z" 
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Fig. l. Stepwise dependence of the boundary temperature on the Fo number 
(1) and its reconstruction (2). 

u(l.Fo~ 

0 

-1.5 
0 

: : : : , , ; , , , , : I , , : : : ~ , : : : : I ; ; : : , , . : : : ~ , . : : : , , , , . , , , . I , , : : , , , , ; : , . :  ,, 
0.2 0.~ 0,6 a 8  Fo 

Fig. 2. Original dependence of the boundary temperature on the Fo number 

(1) and its reconstruction (2). 

On the other hand, from an exact solution of the direct thermoconductivity problem with a linear evolution 

law of the boundary temperature, for large Fourier numbers [4 ] we obtain 

u (1 ,  Fo) = u (0 ,  Fo) + 0.5.4. (8) 

Comparing the dependences (7) and (8) one can easily see that at small values of the regularization 

parameter a they practically coincide. 

We now dwell on the distinctive features of solving an inverse problem at small Fourier numbers when the 

signal delay time which arises from the error of measurements should be taken into account. Such a connection can 

be explained in the following manner. At time zero let the relative temperature at the outer surface of the plate be 

measured in the region from zero initial temperature to unity. If in this case the sensitivity of the detector allows 
one to measure the relative temperature vibrations at the termo-insulated surface with an accuracy of four decimal 
places, then, as follows from the results of solving the direct problem [4, p. 95 ], the signal will be recorded at a 
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Fourier number equal to 0.032, in the case of three decimal places this occurs at 0.04, in the case of two decimal 

places this occurs at 0.056, etc. 

To test the possibilities of the method at low Fourier numbers a numerical experiment on the reconstruction 

of the stepwise dependence of the boundary temperature was carried out. The original data for the calculation were 

obtained by solving numerically the direct problem with a step along the Fourier number equal to 0.01 and rounding 

the results to the fourth decimal place. Figure 1 shows the original stepwise dependence and its reconstruction 
according to expression (5) with the reconstructed dependence plotted with a shift along the Fourier number equal 
to 0.032 in accordance with the accuracy of the original data. 

To test the independence of the delay times from the shape of the original boundary dependence as well 

as to test the possibility of choosing the regularization parameter in the preliminary experiment the problem of 
reconstruction of the boundary temperature was solved: 

g (Fo) = sin (27r Fo) + 0.5 sin (6~r Fo). 

The original data, as in the preceding example, were obtained by solving numerically the direct problem 

with a step along the Fourier number equal to 0.01 and rounding of the results to the fourth decimal place. Figure 

2 shows the plots of the original and the reconstructed dependences with the latter given with a shift of 0.032. The 

regularization parameter a was taken to be equal in the calculations to the value found in the process of the 
reconstruction of the stepwise dependence. 

The given method is rather general and can be applied to the reconstruction of boundary conditions of the 
first, second, and third kind for bodies of classical geometry. Such a generalization consists in the use of a 

transmission function in equation (3) and subsequent evaluation of its fractional rational approximation. In this 

case only the values of the coefficients are changed in the calculation formula (5). The practice of solving inverse 

problems has shown that the method considered in the present article is applicable in the case where the solution 

of the corresponding direct problem can be found with reasonable accuracy with the use of an approximation of the 
transmission function (4). 
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